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Abstract 

The extreme relativistic limit (E-representation) of the wave equation in the Schr6dinger 
form iO~r = HV describing particles and anti-particles of spin 's' and non-zero rest 
mass 'm' is presented here. As the wave function has just the miniulum number of 
2(2s + 1) components, the necessity of avoiding redundant components by auxiliary 
conditions does not arise. Relevant expressions are given for the infinitesimal generators 
of the Poincar6 group and for the operators representing the observables in this 
representation. 

1. Introduction 

In recent years Weaver et al. 0964) and Mathews (1966b) have studied 
relativistic wave equations for arbitrary spin of non-zero rest mass in the 
Schr/Sdinger form, 

i~ t  = H O (1.1) 

where the locally covariant wave function ~b transforms according to the 
D(O,s) @ D(s,O) representation of the Lorentz group. The advantage of 
this formulation is that the wave function has just the minimum number of 
components, 2(2s+ 1), required to describe particles-anti-particles of 
spin 's '  and non-zero rest mass. The relativistic invariance of equation (1.1) 
is ensured by requiring that H and i(O/at) have identical commutation 
relations with generators of the Poincar6 group defined over the space of 
wave function ~,. 

[H, P] = 0 (1.2) 

J = ( x •  with S = ( O  ~) [H,J] = 0 ;  (1.2a) 

[U, K] = ip (1.2b) 
0 

K = t p - x H + i , ~ ,  with ~ , = ( ;  _ s ) =  paS (1.2c) 
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Here s = (sl,s2,sa) is the (2s + 1) dimensional angular momentum matrix. 
These conditions on 'H '  and second quantisability of the wave equation 

(1.1) consistent with microcausality permit only the following two 
Hamiltonians (Mathews, 1967), the first being applicable for half integral 
spin and the second for integer spins. 

! s  
H= ~ Etanh2#OC, + Pl ~ Esech2ltOBu (1.3) 

1/2 1/2 

n =  ecoth2 ,OC.  + p. Ecosech2 0C. (13a) 
0 0 

where 
cosh 0 = Elm; sinh 0 = p/m (1.3b) 

Pl and Pa are Pauli's first and third matrices whose elements are taken as 
(2s + 1) dimensional matrices rather than just numbers. Bu and (7, are 
even and odd combinations of the projection operator A, to the eigenvalue 
# of ,~p = (;t. p)/p. 

Bu = A t, + A_ .  (1.4) 

(7. = Au - A_~ (1.4a) 

B. G, = G, 6u~, (1.4c) 

However, for describing the motion of particles in the non-relativistic or 
the extreme relativistic limits, one makes use of certain special representa- 
tions related to the above, i.e. (1.1), by similarity transformations. A 
generalisation of the Foldy & Wouthuysen (1950) transformation (given 
by them for spin-half) has been adopted by Mathews (1966a) and Sankar- 
anarayanan & Good (1965) to get at the canonical representation in which 
the position and spin operators are represented by x and S. This canonical 
representation, being the non-relativistic limit of the wave equation (1.1), 
has been found especially suitable for obtaining the electromagnetic 
properties of a spin-one particle by Shay & Good (1969). We present in 
this paper another representation which would be most appropriate for the 
description of particles moving with extremely relativistic speeds. The 
discussion of such a representation in the spin-half case was presented by 
Cini & Touscheck (1958) years ago by projecting equation (1.1) to the 
extreme relativisticlimit, and since then its generalisation has been attempted 
(Mathews & Sankaranarayanan, 1961, 1962, 1964) in special cases of 
higher spins. But the analysis presented here is very general as it is applicable 
for any spin and at the same time does not suffer from the necessity of 
eliminating redundant components as in the conventional manifestly 
covariant equations. Also, explicit expressions have been obtained for the 
generators of the Poincar6 group. To our knowledge this is the first time 
that such a general derivation has been presented for arbitrary spin. For 
convenience, following Bose et al. (1961), we shall call equation (1.1), with 
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Poincar6 generators given by (1.2) and (1.3), the D-representation. The 
Foldy-Wouthuysen representation will be termed 'C'-representation and 
the extreme relativistic one as the 'E'-representation. The procedure 
adopted here, to go to the 'E'-representation, is as follows: From the 
knowledge of the transformation operator linking the representations C 
and D, an operator is constructed to transform the C-representation into 
the E-representation and that operator is used to obtain relevant expressions 
for the infinitesimal generators of the Poincar6 group and to construct a 
Lorentz invariant scalar product. Suitable well-behaved operators for the 
observables in the E-representation have also been obtained and finally 
it is shown that these operators can be expressed purely in terms of the 
generators of the Poincar6 group. Since the form of H in D-representation 
is different for integer and half-integer spins we shall accordingly deal with 
them separately. 

2. The C- and E-Representations for Half-Integral Spins 

(i) C-Representation 
The wave equation is of the form 

iOr = Hc ~9c (2.1) 

~Oc = S-10  = [1/~ z fl~+)Bu+pl ~ fl(~-)C.] 0 (2.1a) 

~ = V(E)  (mE + mp)" [(E +p)Z. • m2U] 
a/(m) [(E + p ) "  + m 4"] (2.1 b) 

Hc = p~{+~/(p2 + m2)} = p~ E (2.2) 

The expressions for the Poincar6 group generators are 

Pc = P; 3c = J (2.3) 

Kc = -(1/2) (xHc + Hc x) + tp + Hc(S x p)/E(E + m) (2.3a) 

(ii) E-Representation 

An operator to transform the C-representation into E-representation is 
obtained here. From (2.1), we have 

Oc -+ 0 = StPc = [~ 6(. +) B. + p~ ~ 6(. -) C.] J/c (2.4) 
6p ) = • ~/2 (mE + mp)-" [(E + p)Z, 4- m 2"] (2.4a) 

In an extreme relativistic situation with which we are concerned here, the 
moving mass (my) of a particle with a velocity v will be infinitely greater 
than its rest mass m. Consequently, the ratio (m/mv) and hence (m/p) would 
tend to zero. As a result, we get, for the extreme relativistic situation, 
1 + m/p -+ 1. A similar consideration would show that for a non-relativistic 
situation, we will have 1 +p/m ~ 1. When this low momentum approxi- 
mation is injected into the operator S, as given in (2.4), it becomes simply 
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a unit operator, since 6~+)(p/m ~ 0 ) =  1 and 6~-)(p/m ~ 0 ) =  0. This 
means, while S transforms ~c into ~, S(p/m ~ 0) transforms ~c into ~kc 
itself. This suggests that the other case S(m/p -+ 0) would transform ~c 
into the extreme relativistic wave function which we denote by the symbol 
~B. Accordingly we write ~/c -+ ~kn = R~kc = S(m/p -+ O)~c. Applying the 
high momentum approximation to the operator S, we get 

R = Y 6~(B~ - Pl C,) (2.5) 
where, 

6~ = (m/4E) 1/2 (2Elm) u (2.5a) 

For  the special case of  spin-half, we get 

R = (1/V'2) [1 - pl(ac.p)/p] (2.5b) 
where 

;; = ~/2 (2.5c) 

The operator given by (2.5b) is exactly the same as that used by Cini & 
Touschek (1958) in their treatment of  the E-representation for the spin-half 
particles. 

For  every infinitesimal generator Gc acting on ~kc there is a corresponding 
generator GE acting on 0R being related to the former by a similarity 
transformation of  the form Ge = RGc R-1 which enables us to obtain an 
expression for Gn once we know that for Go Using the expressions for R 
and R -1 we get;~ 

PE = e;  a~ = a; HE = E ~ C, (2.6) 
1/2 

i(4E 2 - m 2) ;t i 3m 2 
KE = tp - xH~ + ~-p~ - 4 ~ ( ~ . p ) p  

m 2 HE(p • S) Plm (2.6a) 
-t 4p2 E 2 ~p2 (B1/2 S + iC~/2 e) • p 

where 
e = (~ • p)/p (2.6b) 

Equation (2.6) is the generalised E-representation Hamiltonian for 
arbitrary half integral spin, which in the special case of  spin-half reduces to 
the expression HE = E(~. p)/p obtained by Cini & Touschek (1958). On the 
wave function ~Oe, HE acts such that iO~E/Ot=HE~/~ and this is the 
Schrt~dinger wave equation in the E-representation. 

(iii) Lorentz Invariant Scalar Product and Physical Assignments 

In the representation Oc the Lorentz invariant inner product is defined as 
(~c, ~c) = ~ ~c*~c d3x. The fact that the operators given by equations (2.3) 

To evaluate RKcR -x we make use of the expressions for the commutation relations 
like [x, Bu], Ix, 6",,]; [2,B,] and [2, Cu] obtained by M. Seetharaman, J. Jayaraman and 
P. M. Mathews (1971), Journal of Mathematical Physics, 12, 835. 



ARBITRARY SPIN WAVE EQUATIONS 315 

are Hermitian (Gc* = Gc) ensures the invariance of the above product under 
the transformations of the Poincar6 group in the sense (~kc, ~c) = (~c, ~d) 
where ~Pc is the transformed wave function. A similar Lorentz invariant 
scalar product can be obtained for E-representation by replacing ~Pc by 
R-x~9~ as shown below. 

@tE,~IE)=f ( R - I ~ I E ) ? R - I ~ E d 3 X = f  ~tE?ME~IEd3x (2,7) 

where the metric operator 

ME = (R-J) * R - j  = ~. (m/2E) 2"-j B~, (2.7a) 

With respect to the scalar product given in (2.7), the expectation value of 
an operator A in a state OE is defined by 

(A) = @e, A~kE) = f tpEt ME Ar d 3 x (2.8) 

For the operator A to be an observable, the above scalar product must be 
real in the sense (~OE, A~E)=(A~E,~O~). This is possible only when 
A tM~ = M~A.  The conventional operators x for the position and S for 
the spin do not meet this requirement and hence are not observables in 
E-representation. We therefore obtain here suitable E-representation 
operators XE for the position and SE for the spin. 

It has been shown (Mathews, 1966a) that the operators x and S, which 
have all the required properties to be observables in the C-representation, 
can be expressed in terms of the generators of the Poincar6 group as, 

x = tpHc E -2 - Kc He  E -2 + ip/2E z 

+ [m(E + m)] -1 [(J x p) Hc + (Kc x p) x p] Hc E -2 (2.9) 

S = (Elm) J - [m(E + m)] -1 (J. p) p + (Era) -I  (Kc x p) He (2.9a) 

By making a similarity transformation with R we get, 

(S x p) iO,.p)pHt 
XE = R x R  -1 = x + ip/2E z -~ m ( E  + m) p E  3 

[m2 HES + i(4E 3 - Era2) c] • pHu 
+ 

4p2E3m 

pl(B1/2 S + iC1/2 e) • pile 
+ 2p 2 E (2.10) 

(S.p)p [i(4E 3 - ErnZ)~ - m2HEp3e] • p i le  
4pE 3 m 

SE = (E/m) S -~ 
m ( E  + m) 

+ Pl( iCln  ~ -- Ban P3 c) • pile 
2pE (2.10a) 
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F or  spin-half equations (2.10) and (2.10a) reduce to 

X ~ = x + i P l a r  iPl(~-P)P ( S x p )  (2.11) 2p 2p 3 p2 

SE = (S.p)p ip~(~ x p) (2.11a) 
p2 2p 

which agree with those obtained by Mathews & Sankaranarayanan (1961, 
1962, 1964) in their treatment of  the E-representation. 

3. C and E-Representations f o r  Integer Spins 

In deriving the results in C- and E-representations for integer spins, the 
only change we have to note is that the Hamiltonian in the D-representation 
is given not by (1.3), but by (t.3a). With this understanding, it is not difficult 
to see that in the C-representation the expressions for the Hamiltonian 
and the inner product are of  the forms Hc = P3 E and (~c, ~c) = J" ~kc* P3 ~Oc d 3 x 
and the operator representing space inversion is not Pl but the unit matrix. 
Moreover, the operator which takes the C-representation to the D- 
representation is found to be of  the formw 

~c ~ ~9 = S~c  (3.1) 

S =  ~ 6u+(1 + pOBu + p3 ~ 6u-(1 + p l ) C  u (3.1a) 
o o 

fie +) = (m/8E)a/Z(mE + mp) -u [(E +p)ZU • mZU] (3.1b) 

S-1 = ~ fl~,+(1 + p l ) B u + p 3  ~ fl(u-)(1 + p l )C .  (3.1c) 
o o 

rnp) u [ (E +p )  • m2Ul-1 fl(u +) = (E/2m) I/z (mE + 2u (3. ld) 

Applying the high momentum approximation 1 + m/p -+ 1 to the operators 
S and S -~ given in equations (3.1) we get 

~t c -+ r = S (m/p  --~ O) t~c =RtPc (3.2) 

R = E 6,[(1 + p l )B,  + p3(1 § Pl) Cu]; 

6 u = (m/SE)  1/z (2Elm) u (3.2a) 

R-1 = ~ flu[( 1 § Pl) Bu § P3( 1 § Pl) Cu]; 
flu = (E/2m) 1/2 (m/2E)  u (3.2b) 

:~ However, in the E-representation the space inversion is represented by Pl only. 
Apart from this, it should also be mentioned that the operators representing the space 
inversion and charge conjugation anticommute for half integral spins and commute for 
integral spins. 

w The observation by P. M. Mathews et al., Nuovo Cimento (1967), 50, 339, that the 
Hamiltonian given in (34) of their paper and (1.3a) of this paper can be brought to a 
diagonal form P3 E through a similarity transformation provided the clue for the author 
to determine the operator S given in (3.1) and its inverse. 
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Final ly ,  the re levant  expressions for  the Poincar6 genera tors  and  Loren tz  
invar iant  scalar  p roduc t  in this case are  found  to be o f  the  forms-~ 

S 

PE = P ;  JE = J ;  HE = E ~ C,  (3.3) 
0 

i(4E 2 - m z ) ~  i3m2(2 .p)p  
Ke = tp - xHE + 

4pE 4p3 E 

mZ He(p x S) imZ pl(Bo,~ + ip3 Co e) 
+ 4p 2 E 2 -~ 4pE (3.3a) 

f ~E* ME ~'~ d 3 x;  M~ = ~ (m/ZE) 2"-1 C u (3.3b) (4'E, 4'E) 

W i t h  respect  to the inner  p roduc t  given in (3.3b) the ope ra to r  XE for the 
pos i t ion  and  S~ for  the spin are found  to be 

X~ = x + ip/2E z + (S • p) i ( ,~.p)pH~ 
m(E + m) pE  3 

[mE HES + i(4E a - Em2) e] x p i l e  
+ 

@2 E 3 m 

- ip~ m(8o ~ + ip3 Co e) H~/4pE ~ (3.4) 
( S . p ) p  [ i(4E 3 - Em2),~-  mZ HEp3e] x pile 

Se = (Elm) S + 
m(E + m) 4pE 3 m 

+ ip~ m(Bo e - ip3 Co,~) Hz/4E 2 (3.4a) 
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